Ported from the JavaScript version of Commodity Futures Intertemporal Hedging-Hundred Lines of Code Implementation, this strategy is a simple teaching strategy, intended to show the design of commodity futures strategies in Python language. Mainly used for learning strategy writing and reference design ideas.

class Hedge:
    'Hedging control class'
    def __init__(self, q, e, initAccount, symbolA, symbolB, hedgeSpread, coverSpread):
        self.q = q 
        self.initAccount = initAccount
        self.status = 0
        self.symbolA = symbolA
        self.symbolB = symbolB
        self.e = e
        self.isBusy = False 
        self.hedgeSpread = hedgeSpread
        self.coverSpread = coverSpread
        self.opAmount = OpAmount 
    def poll(self):
        if (self.isBusy or not exchange.IO("status")) or not ext.IsTrading(self.symbolA):

        insDetailA = exchange.SetContractType(self.symbolA)
        if not insDetailA:

        tickerA = exchange.GetTicker()
        if not tickerA:

        insDetailB = exchange.SetContractType(self.symbolB)
        if not insDetailB:

        tickerB = exchange.GetTicker()
        if not tickerB:

        LogStatus(_D(), "A sell B buy", _N(tickerA["Buy"] - tickerB["Sell"]), "A buy B sell", _N(tickerA["Sell"] - tickerB["Buy"]))
        action = 0

        if self.status == 0:
            if (tickerA["Buy"] - tickerB["Sell"]) > self.hedgeSpread:
                Log("open position A sell B buy", tickerA["Buy"], tickerB["Sell"], "#FF0000")
                action = 1
            elif (tickerB["Buy"] - tickerA["Sell"]) > self.hedgeSpread:
                Log("open position B sell A buy", tickerB["Buy"], tickerA["Sell"], "#FF0000")
                action = 2
        elif self.status == 1 and (tickerA["Sell"] - tickerB["Buy"]) <= self.coverSpread:
            Log("close position A buy B sell", tickerA["Sell"], tickerB["Buy"], "#FF0000")
            action = 2
        elif self.status == 2 and (tickerB["Sell"] - tickerA["Buy"]) <= self.coverSpread:
            Log("close position B buy A sell", tickerB["Sell"] - tickerA["Buy"], "#FF0000")
            action = 1 

        if action == 0:
        self.isBusy = True
        tasks = []
        if action == 1:
            tasks.append([self.symbolA, "sell" if self.status == 0 else "closebuy"])
            tasks.append([self.symbolB, "buy" if self.status == 0 else "closesell"])
        elif action == 2:
            tasks.append([self.symbolA, "buy" if self.status == 0 else "closesell"])
            tasks.append([self.symbolB, "sell" if self.status == 0 else "closebuy"])

        def callBack(task, ret):
            def callBack(task, ret):
                self.isBusy = False
                if task["action"] == "sell":
                    self.status = 2
                elif task["action"] == "buy":
                    self.status = 1
                    self.status = 0
                    account = _C(exchange.GetAccount)
                    LogProfit(account["Balance"] - self.initAccount["Balance"], account)
            self.q.pushTask(self.e, tasks[1][0], tasks[1][1], self.opAmount, callBack)

        self.q.pushTask(self.e, tasks[0][0], tasks[0][1], self.opAmount, callBack)

def main():
    Log("Connecting to the trading server...")
    while not exchange.IO("status"):

    Log("Successfully connected to the trading server")
    initAccount = _C(exchange.GetAccount)
    n = 0 

    def callBack(task, ret):
        Log(task["desc"], "success" if ret else "fail")

    q = ext.NewTaskQueue(callBack)

    if CoverAll:
        Log("Start closing all remaining positions...")
        Log("Operation complete")

    t = Hedge(q, exchange, initAccount, SA, SB, HedgeSpread, CoverSpread)
    while True:

Just transplanting the code, it feels a bit too simple, we continue to do some transformations, add charts to this trading strategy.

Add the following code before the position where the LogStatus function is called to make the real-time price difference into a K-line statistics. self.preBarTime is a member added by the Hedge class to record the latest BAR timestamp. For drawing, we use "Drawing Class library", directly call the drawing interface, you can easily draw charts.

# Calculate the spread K line
        r = exchange.GetRecords()
        if not r:
        diff = tickerB["Last"] - tickerA["Last"]
        if r[-1]["Time"] != self.preBarTime:
            # Update
            self.records.append({"Time": r[-1]["Time"], "High": diff, "Low": diff, "Open": diff, "Close": diff, "Volume": 0})
            self.preBarTime = r[-1]["Time"]
        if diff > self.records[-1]["High"]:
            self.records[-1]["High"] = diff
        if diff < self.records[-1]["Low"]:
            self.records[-1]["Low"] = diff
        self.records[-1]["Close"] = diff
        ext.PlotRecords(self.records, "diff:B-A")
        ext.PlotHLine(self.hedgeSpread if diff > 0 else -self.hedgeSpread, "hedgeSpread")
        ext.PlotHLine(self.coverSpread if diff > 0 else -self.coverSpread, "coverSpread")

Backtesting effect:

Next, we will add interactive functions, so that the strategy can modify the HedgeSpread and CoverSpread parameters at runtime to control the hedging spread and closing spread. You also need a button to close the position with one click. We add these controls on the strategy editing page.

Then in the main loop of the strategy, after the q.poll()t.poll() call, add the interactive control code.

while True:
        # The following interactive control code
        cmd = GetCommand()
        if cmd:
            arr = cmd.split(":")
            if arr[0] == "AllCover":
            elif arr[0] == "SetHedgeSpread":
            elif arr[0] == "SetCoverSpread":

you can copy the whole trading strategy here: https://www.fmz.com/strategy/211504

Leave a Reply

Your email address will not be published. Required fields are marked *